News:

Look, I haven't mentioned Zeus, Buddah, or some religion.

Main Menu

Reports on the Annals of the Former World

Started by Recusant, May 02, 2020, 08:30:19 PM

Previous topic - Next topic

Recusant

#30
Quote from: Randy on June 10, 2020, 02:28:49 PM
Nah, eternity sounds boring. Besides, worshiping for eternity does not seem like paradise to me.

The atheist in a foxhole certain to be over-run by a merciless foe. I salute him, and should have done when he wrote that post.  Really we are all in a similar situation, though the circumstances may be less certainly imminent. Regrets abound; we abide, for now.  :smokin cool:
"Religion is fundamentally opposed to everything I hold in veneration — courage, clear thinking, honesty, fairness, and above all, love of the truth."
— H. L. Mencken


Recusant

Sticking their nasty rock hammers in where they don't belong! Everybody knows the Grand Canyon was formed during the time of Noahz Flud.   :pedant:

Yes, it's from this past summer, but in a geological sense that was a couple of nanoseconds ago.  :eh:

"Geologists dig into Grand Canyon's mysterious gap in time" | EurekAlert

QuoteA new study led by the University of Colorado Boulder reveals the complex history behind one of the Grand Canyon's most well-known geologic features: A mysterious and missing gap of time in the canyon's rock record that covers hundreds of millions of years.

The research comes closer to solving a puzzle, called the "Great Unconformity," that has perplexed geologists since it was first described nearly 150 years ago.

Think of the red bluffs and cliffs of the Grand Canyon as Earth's history textbook, explained Barra Peak, lead author of the new study and a graduate student in geological sciences at CU Boulder. If you scale down the canyon's rock faces, you can jump back almost 2 billion years into the planet's past. But that textbook is also missing pages: In some areas, more than 1 billion years' worth of rocks have disappeared from the Grand Canyon without a trace.

Geologists want to know why.

"The Great Unconformity is one of the first well-documented geologic features in North America," Peak said. "But until recently, we didn't have a lot of constraints on when or how it occurred."

Now, she and her colleagues think they may be narrowing in on an answer in a paper published this month in the journal Geology. The team reports that a series of small yet violent faulting events may have rocked the region during the breakup of an ancient supercontinent called Rodinia. The resulting havoc likely tore up the earth around the canyon, causing rocks and sediment to wash away and into the ocean.

[Continues . . .]

The paper is open access. A PDF of it is available by clicking through from the link below.

"Zircon (U-Th)/He thermochronology reveals pre-Great Unconformity paleotopography in the Grand Canyon region, USA" | Geology

QuoteAbstract:

The Great Unconformity is an iconic geologic feature that coincides with an enigmatic period of Earth's history that spans the assembly and breakup of the supercontinent Rodinia and the Snowball Earth glaciations. We use zircon (U-Th)/He thermochronology (ZHe) to explore the erosion history below the Great Unconformity at its classic Grand Canyon locality in Arizona, United States. ZHe dates are as old as 809 ± 25 Ma with data patterns that differ across both long (∼100 km) and short (tens of kilometers) spatial wavelengths.

The spatially variable thermal histories implied by these data are best explained by Proterozoic syndepositional normal faulting that induced differences in exhumation and burial across the region. The data, geologic relationships, and thermal history models suggest Neoproterozoic rock exhumation and the presence of a basement paleo high at the present-day Lower Granite Gorge synchronous with Grand Canyon Supergroup deposition at the present-day Upper Granite Gorge.

The paleo high created a topographic barrier that may have limited deposition to restricted marine or nonmarine conditions. This paleotopographic evolution reflects protracted, multiphase tectonic activity during Rodinia assembly and breakup that induced multiple events that formed unconformities over hundreds of millions of years, all with claim to the title of a "Great Unconformity."

[¶ added. - R]
"Religion is fundamentally opposed to everything I hold in veneration — courage, clear thinking, honesty, fairness, and above all, love of the truth."
— H. L. Mencken


Recusant

From whence the highly addictive element oxygen in the atmosphere of our Earth? With a special guest appearance by that particularly interesting crystal, zircon.

"Where did the Earth's oxygen come from? New study hints at an unexpected source" | The Conversation

QuoteThe amount of oxygen in the Earth's atmosphere makes it a habitable planet.

Twenty-one per cent of the atmosphere consists of this life-giving element. But in the deep past — as far back as the Neoarchean era 2.8 to 2.5 billion years ago — this oxygen was almost absent.

So, how did Earth's atmosphere become oxygenated?

Our research, published in Nature Geoscience, adds a tantalizing new possibility: that at least some of the Earth's early oxygen came from a tectonic source via the movement and destruction of the Earth's crust.

The Archean eon represents one third of our planet's history, from 2.5 billion years ago to four billion years ago.

This alien Earth was a water-world, covered in green oceans, shrouded in a methane haze and completely lacking multi-cellular life. Another alien aspect of this world was the nature of its tectonic activity.

One feature of modern subduction zones is their association with oxidized magmas. These magmas are formed when oxidized sediments and bottom waters — cold, dense water near the ocean floor — are introduced into the Earth's mantle. This produces magmas with high oxygen and water contents.

On modern Earth, the dominant tectonic activity is called plate tectonics, where oceanic crust — the outermost layer of the Earth under the oceans — sinks into the Earth's mantle (the area between the Earth's crust and its core) at points of convergence called subduction zones. However, there is considerable debate over whether plate tectonics operated back in the Archean era.

Our research aimed to test whether the absence of oxidized materials in Archean bottom waters and sediments could prevent the formation of oxidized magmas. The identification of such magmas in Neoarchean magmatic rocks could provide evidence that subduction and plate tectonics occurred 2.7 billion years ago.

We collected samples of 2750- to 2670-million-year-old granitoid rocks from across the Abitibi-Wawa subprovince of the Superior Province — the largest preserved Archean continent stretching over 2000 km from Winnipeg, Manitoba to far-eastern Quebec. This allowed us to investigate the level of oxidation of magmas generated across the Neoarchean era.

Measuring the oxidation-state of these magmatic rocks — formed through the cooling and crystalization of magma or lava — is challenging. Post-crystallization events may have modified these rocks through later deformation, burial or heating.

So, we decided to look at the mineral apatite which is present in the zircon crystals in these rocks. Zircon crystals can withstand the intense temperatures and pressures of the post-crystallization events. They retain clues about the environments in which they were originally formed and provide precise ages for the rocks themselves.

Small apatite crystals that are less than 30 microns wide — the size of a human skin cell — are trapped in the zircon crystals. They contain sulfur. By measuring the amount of sulfur in apatite, we can establish whether the apatite grew from an oxidized magma.

[Continues . . .]

The paper is behind a paywall.

QuoteAbstract:

Oxidized, sulfur-rich arc magmas are ubiquitous in modern subduction-zone environments. These magmas are thought to form when the fluids released during prograde metamorphism of subducting oceanic crust and overlying sediments oxidize and hydrate the asthenospheric mantle. In contrast, Archaean arc-type magmas are thought to be relatively reduced and sulfur poor, owing to the lower concentrations of marine sulfate and limited oxidative seafloor alteration in the anoxic ocean before the Great Oxidation Event some 2.4 billion years ago (Ga).

Here we measure the total sulfur concentration and relative abundances of S6+, S4+ and S2− in zircon-hosted apatite grains from sodic and potassic intrusive rocks from the ~2.7 Ga southeastern Superior Province, Canada. We find that, rather than being reduced and sulfur poor, the sulfur budget of the Neoarchaean magmas was dominated by S6+ and abruptly increased to concentrations comparable to Phanerozoic arc magmas following the interpreted onset of subduction at approximately 2.7 Ga, coincident with the first global pulse of crust generation. These findings indicate that oxidized, sulfur-rich magmas formed in subduction zones independent of ocean redox state and could have influenced oceanic–atmospheric and metallogenic evolution in the Neoarchaean.

"Religion is fundamentally opposed to everything I hold in veneration — courage, clear thinking, honesty, fairness, and above all, love of the truth."
— H. L. Mencken


Recusant

Seems entirely appropriate for this thread.  :sidesmile:

"Is some of the body that collided with Earth to form the Moon still recognisable inside our planet?" | The Conversation

QuoteScientists have dated the birth of the Solar System to about 4.57 billion years ago. About 60 million years later a "giant impact" collision between the infant Earth and a Mars-sized body called Theia created the Moon.

Now, new research suggests that the remains of the large object that collided with the young Earth to form the Moon are still identifiable deep within the planet as two large lumps. These lumps make up about 8% of the volume of the Earth's mantle, which is the rocky zone between the Earth's iron core and its crust.

The new study, led by Qian Yuan of Arizona State University and Caltech, argues that the heat generated by this collision was not enough to melt the whole of the Earth's mantle, so the innermost mantle remained solid.

Consequently, the researchers say, the melted mantle of Theia didn't completely mix with Earth's mantle. That would have made the Theia remnants indistinguishable from Earth's mantle as a whole. Instead, a lot of Theia's mantle ended up as two continent-sized lumps that now sit on top of the Earth's core-mantle boundary.

[Continues . . .]






The paper is behind a paywall.

QuoteAbstract:

Seismic images of Earth's interior have revealed two continent-sized anomalies with low seismic velocities, known as the large low-velocity provinces (LLVPs), in the lowermost mantle1. The LLVPs are often interpreted as intrinsically dense heterogeneities that are compositionally distinct from the surrounding mantle2.

Here we show that LLVPs may represent buried relics of Theia mantle material (TMM) that was preserved in proto-Earth's mantle after the Moon-forming giant impact3. Our canonical giant-impact simulations show that a fraction of Theia's mantle could have been delivered to proto-Earth's solid lower mantle.

We find that TMM is intrinsically 2.0–3.5% denser than proto-Earth's mantle based on models of Theia's mantle and the observed higher FeO content of the Moon. Our mantle convection models show that dense TMM blobs with a size of tens of kilometres after the impact can later sink and accumulate into LLVP-like thermochemical piles atop Earth's core and survive to the present day.

The LLVPs may, thus, be a natural consequence of the Moon-forming giant impact. Because giant impacts are common at the end stages of planet accretion, similar mantle heterogeneities caused by impacts may also exist in the interiors of other planetary bodies.
"Religion is fundamentally opposed to everything I hold in veneration — courage, clear thinking, honesty, fairness, and above all, love of the truth."
— H. L. Mencken


Recusant

This is intriguing. The climate didn't "recover" for approximately five million years after the massive volcanic injection of CO2 into the atmosphere that occurred at the end of the Permian period. Models suggest that it should have taken much less time (approximately 100,000 years). The paper described below hypothesizes that the longer time scale of the recovery was due to "reverse weathering," which I take to mean a massive proliferation of certain microscopic organisms in the oceans. However I think my understanding is oversimplified and possibly incorrect.  ;)

"Study uncovers key to delayed climate recovery following mass extinction event" | Phys.org

Quotestudy led by a University of Waikato Ph.D. student has shed light on the cause of delayed climate recovery following Earth's most severe extinction event 251 million years ago—a discovery that will contribute to our understanding of the global climate system.

Published in Proceedings of the National Academy of Sciences by lead researcher Sofia Rauzi, this research reveals the role marine clay formation had in slowing the Earth's return to baseline temperatures after the end-Permian mass extinction.

Earth's climate system is generally viewed to recover in the order of 100,000 years following a significant carbon injection event such as the volcanic eruption that triggered the end-Permian mass extinction.

"Climate recovery following the end-Permian took over five million years, so we set out to investigate why temperatures stayed warm for so long," says Ms Rauzi. Analysis of the chemical composition of rocks from New Zealand, Japan, and Norway indicates that increased marine clay formation, also known as reverse weathering, contributed to the sustained high temperatures.

[Continues . . .]

The paper is behind a paywall.

QuoteAbstract:

Elevated temperatures persisted for an anomalously protracted interval following pulsed volcanic carbon release associated with the end-Permian mass extinction, deviating from the expected timescale of climate recovery following a carbon injection event.

Here, we present evidence for enhanced reverse weathering—a CO2 source—following the end-Permian mass extinction based on the lithium isotopic composition of marine shales and cherts. We find that the average lithium isotopic composition of Lower Triassic marine shales is significantly elevated relative to that of all other previously measured Phanerozoic marine shales.

Notably, the record generated here conflicts with carbonate-based interpretations of the lithium isotopic composition of Early Triassic seawater, forcing a re-evaluation of the existing framework used to interpret lithium isotopes in sedimentary archives.

Using a stochastic forward lithium cycle model, we demonstrate that elevated reverse weathering is required to reproduce the lithium isotopic values and trends observed in Lower Triassic marine shales and cherts. Collectively, this work provides direct geochemical evidence for enhanced reverse weathering in the aftermath of Earth's most severe mass extinction.
"Religion is fundamentally opposed to everything I hold in veneration — courage, clear thinking, honesty, fairness, and above all, love of the truth."
— H. L. Mencken


Recusant

I've come across a few examples of karst but probably the most striking karst landscape I've seen is the limestone pavement of the Burren in Ireland. There are more spectacular examples (like the one in Western Australia described below) but I haven't been lucky enough to visit them.

"Limestone and iron reveal puzzling extreme rain in Western Australia 100,000 years ago" | The Conversation

QuoteAlmost one-sixth of Earth's land surface is covered in otherworldly landscapes with a name that may also be unfamiliar: karst. These landscapes are like natural sculpture parks, with dramatic terrain dotted with caves and towers of bedrock slowly sculpted by water over thousands of years.

Karst landscapes are beautiful and ecologically important. They also represent a record of Earth's past temperature and moisture levels.

However, it can be quite challenging to figure out exactly when karst landscapes formed. In our new work published today in Science Advances, we show a new way to find the age of these enigmatic landscapes, which will help us understand our planet's past in more detail.

[. . .]

In our study, we found a way to measure the age of pebble-sized iron nodules that formed at the same time as a karst landscape.

This method has the technical name of (U/Th)-He geochronology. In it, we measure how much helium is produced by the natural radioactive decay of tiny amounts of the elements uranium and thorium in the iron nodules. By comparing the amounts of uranium, thorium and helium in a sample, we can very accurately calculate the age of the nodules.

We dated microscopic fragments of iron-rich nodules from the iconic Pinnacles Desert in Nambung National Park, Western Australia.

This world-famous site is renowned for its otherworldly karst landscape of acres of limestone pillars towering metres above a sandy desert plain. The Pinnacles form part of the most extensive belt of wind-blown carbonate rock in the world, stretching more than 1,000km along coastal southwestern WA.

[. . .]

We consistently found an age of around 100,000 years for the growth of the iron nodules. This date is supported by known ages from the rocks above and beneath the karst surface, proving the reliability of our new approach.

At the same time as chemical reactions caused growth of the iron-rich nodules within the ancient soil, limestone bedrock was rapidly and extensively dissolved to leave only remnant limestone pinnacles seen today.

[Continues . . .]

The paper is open access:

"Ironing out complexities in karst chronology: (U-Th)/He ferricrete ages reveal wet MIS 5c" | Science Advances

QuoteAbstract:

Karst landforms provide insights into landscape evolution and paleoclimate but are inherently challenging to date. An ancient interval of particularly intense weathering of Western Australian Pleistocene aeolianites is recorded in a spectacular pinnacle karst landscape with associated ferricrete nodules. (U-Th)/He dating of the ferricrete nodules revealed an age of 102.8 + 10.6/−11.4 thousand years, corresponding to marine isotope stage 5c.

The (U-Th)/He age thus directly dates the wettest interglacial period in the region over the last 500 thousand years, which was responsible for the dissolution that formed the pinnacles. The reliability of the ferricrete (U-Th)/He age is supported by bounding optically stimulated luminescence and U-Th dates on associated aeolianites and carbonate precipitates, respectively.

A (U-Th)/He approach is globally applicable to aeolianites with associated ferricretes, allowing more accurate dating of the environmental changes affecting these lithologies, and temporally constraining rapid Pleistocene climatic oscillations to better contextualize the associated evolution of the biosphere.

"Religion is fundamentally opposed to everything I hold in veneration — courage, clear thinking, honesty, fairness, and above all, love of the truth."
— H. L. Mencken


Recusant

Continuing on the theme of limestone, a follow-up plant survey of limestone pavements in Britain shows an apparent increase in diversity of species over the past 50 years concurrent with intrusive species like thistle making gains.

Not groundbreaking and likely not all that worthwhile unless one has an interest in limestone pavements. I happen to have that interest but I also find myself spending more time reading science news lately, less on other fronts. :lol:

"Study reveals half a century of change on Britain's iconic limestone pavements" | Phys.org

QuoteFifty years of change on iconic limestone pavements has revealed mixed fortunes for one of the most distinctive landscapes in the UK. The landscapes—which will be familiar to visitors to the Yorkshire Dales and fans of Harry Potter and the Deathly Hallows film—have, in many places, seen reductions of specialist species and more common less desirable species become more abundant.

However, it is not all bad news as the picture is very mixed across the UK's areas of limestone pavement with some areas increasing in plant biodiversity.

The findings, which reveal large changes since the 1970s, are from the first national assessment in half a century of plants and vegetation in Britain's rare and iconic limestone pavements, which was conducted by Carly Stevens, Professor of Plant Ecology at Lancaster University.

An internationally important habitat, Britain's limestone pavements are predominantly found in the northern English counties of Yorkshire, Lancashire and Cumbria, as well as in North Wales and Scotland.

Plants, such as ferns and herbaceous species more commonly found in woodland, heathlands and grasslands, grow within the deep gaps and cracks in limestone pavements known as grikes, often creating a hidden world that you cannot see until you stand directly above them.

[Continues . . .]

The paper is open access:

"Large changes in vegetation composition seen over the last 50 years in British limestone pavements" | Functional Ecology

QuoteAbstract:

1. Limestone pavements contain a unique flora, dominated by ferns with a mix of herbaceous species more often found in woodlands, heathlands and grasslands. The crevices between the rocks are known as grikes, they provide a shaded habitat which, depending on pavement structure, can protect plants from grazing. Despite being of conservation importance and supporting a number of rare and scarce plant species there has been very little research into vegetation change in limestone pavements.

2. This study repeated a survey originally conducted between 1972 and 1975. The Ward and Evans survey visited 535 limestone pavement units spread across England, Scotland and Wales and recorded grike vegetation. This study was able to resurvey 516 of those pavements and repeat the survey using the original methods. Expansion of tree and shrub cover has been observed in some pavements but not previously quantified so tree cover was assessed using historic aerial photographs and satellite imagery.

3. On average species richness per pavement increased but there was a very wide range of change in species richness across individual pavement units ranging from a loss of 56 species to an increase of 38. Dissimilarity averaged 0.41. The area of pavement covered by trees or large shrubs increased by 62% between the two surveys but the number of pavements with zero tree cover also increased.

4. Breaking down pavement units into those with low (<5%), medium (5%–30%) and high (>30%) current tree cover shows that species richness increased in open pavements but was reduced in pavements with high tree cover. Pavement units with high tree cover also showed higher dissimilarity and lower levels of indicators of disturbance. In pavements with high tree cover Ellenberg light (L) values were significantly lower than in open pavements. Open pavements showed higher levels of competitive species (based on Grime CSR values) but no change difference in Ellenberg nutrient (N) values.

5. Vegetation in limestone pavements has changed considerably in the period between the two surveys with negative effects of high tree and shrub cover particularly problematic. There is an urgent need for investigation to support management decisions in this habitat.

Read the free Plain Language Summary for this article on the Journal blog.

"Religion is fundamentally opposed to everything I hold in veneration — courage, clear thinking, honesty, fairness, and above all, love of the truth."
— H. L. Mencken


Recusant

Apparent evidence that during the "Snowball Earth" period, even equatorial regions were ice covered.

"Evidence from Snowball Earth found in ancient rocks on Colorado's Pikes Peak – it's a missing link" | The Conversation

QuoteAround 700 million years ago, the Earth cooled so much that scientists believe massive ice sheets encased the entire planet like a giant snowball. This global deep freeze, known as Snowball Earth, endured for tens of millions of years.

Yet, miraculously, early life not only held on, but thrived. When the ice melted and the ground thawed, complex multicellular life emerged, eventually leading to life-forms we recognize today.

The Snowball Earth hypothesis has been largely based on evidence from sedimentary rocks exposed in areas that once were along coastlines and shallow seas, as well as climate modeling. Physical evidence that ice sheets covered the interior of continents in warm equatorial regions had eluded scientists – until now.

In new research published in the Proceedings of the National Academy of Sciences, our team of geologists describes the missing link, found in an unusual pebbly sandstone encapsulated within the granite that forms Colorado's Pikes Peak.

Pikes Peak, originally named Tavá Kaa-vi by the Ute people, lends its ancestral name, Tava, to these notable rocks. They are composed of solidified sand injectites, which formed in a similar manner to a medical injection when sand-rich fluid was forced into underlying rock.

A possible explanation for what created these enigmatic sandstones is the immense pressure of an overlying Snowball Earth ice sheet forcing sediment mixed with meltwater into weakened rock below.

An obstacle for testing this idea, however, has been the lack of an age for the rocks to reveal when the right geological circumstances existed for sand injection.

We found a way to solve that mystery, using veins of iron found alongside the Tava injectites, near Pikes Peak and elsewhere in Colorado.

Iron minerals contain very low amounts of naturally occurring radioactive elements, including uranium, which slowly decays to the element lead at a known rate. Recent advancements in laser-based radiometric dating allowed us to measure the ratio of uranium to lead isotopes in the iron oxide mineral hematite to reveal how long ago the individual crystals formed.

The iron veins appear to have formed both before and after the sand was injected into the Colorado bedrock: We found veins of hematite and quartz that both cut through Tava dikes and were crosscut by Tava dikes. That allowed us to figure out an age bracket for the sand injectites, which must have formed between 690 million and 660 million years ago.

The time frame means these sandstones formed during the Cryogenian Period, from 720 million to 635 million years ago. The name is derived from "cold birth" in ancient Greek and is synonymous with climate upheaval and disruption of life on our planet – including Snowball Earth.

While the triggers for the extreme cold at that time are debated, prevailing theories involve changes in tectonic plate activity, including the release of particles into the atmosphere that reflected sunlight away from Earth. Eventually, a buildup of carbon dioxide from volcanic outgassing may have warmed the planet again.

[Continues . . .]

The paper is behind a paywall.

QuoteAbstract:

The Snowball Earth hypothesis predicts global ice cover; however, previous descriptions of Cryogenian (720-635 Ma) glacial deposits are limited to continental margins and shallow marine basins.

The Tavakaiv (Tava) sandstone injectites and ridges in Colorado, USA, preserve a rare terrestrial record of Cryogenian low-latitude glaciation. Injectites, ridges, and chemically weathered crystalline rock display features characteristic of fluidization and pervasive deformation in a subglacial environment due to glacial loading, fluid overpressure, and repeated sand injection during meltwater events.

In situ hematite U-Pb geochronology on hematite-quartz veins, which crosscut and are cut by Tava dikes, constrain sand injection at ~690-660 Ma. We attribute early Tava sand injection episodes to basal melting associated with rifting and geothermal heating, and later injections to meltwater generation during ~661 Ma Sturtian deglaciation.

A modern analog is provided by the Ross Embayment of Antarctica, where rift-related faults border sediment-filled basins, overpressurized fluids circulate in confined aquifers below ice, and extensive preglacial topography is preserved. Field evidence and geochronology in Colorado further highlight that deep chemical weathering of Proterozoic bedrock and denudation associated with the Great Unconformity predate Cryogenian injection of fluidized sand, consistent with limited glacial erosion.

"Religion is fundamentally opposed to everything I hold in veneration — courage, clear thinking, honesty, fairness, and above all, love of the truth."
— H. L. Mencken


Dark Lightning


Old Seer


Articles like this get me wondering "WHAT" was I at that time. IOW. what was my ancestor then. Probably a shivering glob of goo or a crawly wormish at a subterranean warm level where my daddy survived. Probably better looking then.
The only thing possible the world needs saving from are the ones running it.
Oh lord, save us from those wanting to save us.
I'm not a Theist.